모수에 대한 포스팅은 아래 링크에서 참조 가능합니다.

[확률/통계] 모수 추정과 추정량, 추정치

 

모수적 방법과 비모수적 방법

통계학의 분석 방법은 모수(parameter)의 필요성 여부에 따라 모수적 방법과 비모수적 방법으로 분류된다. 모수란 입력 데이터의 분포를 가정(ex: 정규분포)하는 것을 의미하며, 비모수란 입력 데이터 분포를 가정하지 않음을 의미한다. 대부분의 분석법은 모수적 분석 방법에 해당한다. 하지만 만약 모수적 방법에서 가정했던 분포가 적합하지 않을 경우 입력 데이터의 특성을 잘 파악하지 못한 것이므로 비모수적 방법을 사용한다. 비모수적 방법은 입력 데이터에 대한 분포를 가정할 수 없는 경우에 사용하는 방법이다. 모수 방법에서 가정했던 입력 데이터 분포를 완화시키는 방식으로 사용한다.

 

머신러닝에서도 모수와 비모수가 적용되어 parametric model과 non parametric model 형태로 나타난다.

 

parametric model

파라미터 수가 결정된 모델을 의미한다. 파라미터 수가 결정된 이유는 입력 데이터가 어떤 분포를 따른다고 가정했기 때문이다. 따라서 non-parametric 모델과 달리 아무리 입력 데이터 양이 많더라도 학습해야 할 파라미터 수는 변하지 않는다. 이러한 parametric model의 종류는 Linear Regression, Logsitic Regression, CNN, RNN 등이 있다. 모델이 학습해야 할 parameter가 결정되어있기 때문에 non-parametric 방식에 비해 학습 속도가 빠르고 모델의 복잡성이 낮다는 장점이 있다. 반면 단점은 입력 데이터가 어떤 분포를 따른다는 가정이 있으므로 유연성이 낮고, non-parametric model에 비해 복잡한 문제를 해결하기 어렵다.

 

non-parametric model

파라미터 수가 결정되지 않은 모델을 의미한다. 입력 데이터가 어떤 분포를 따른다고 가정하지 않았기 때문이다. 따라서 non-parametric model은 입력 데이터에 대한 사전 지식이 없을 때 사용할 수 있다. 이러한 non-parametric model의 종류는 GAN이나 decision tree, random forest, k-nearest neighbor 등이 있다. 이런 non-parametric model은 어떤 분포를 다른다고 가정하지 않았기 때문에 parametric model에 비해 훨씬 유연성이 있다는 장점이 있다. 반면 parametric model에 비해 학습 속도가 느리거나, 더 많은 양의 데이터를 필요로 한다는 단점이 있다.

 

Reference

[1] Parametric model Non-parametric model (유니의 공부)

+ Recent posts